
Table IV-Average Urinary Excretion of Levodopa and Its Metabolite after Oral Administration of Levodopa to Sterilized Dogs and 
Control Dogs 

Total Total 
Dogs Total Levodopaa Total Dopamineb 3,4-Dihydroxyphenylacetic AcidC Homovanillic Acidd Totale 

Control 0.47 f 0.07f 8.9 f 1.2 9.3 f 1.4 30.4 f 2.3 49.1 f 2.4 
Sterilized 0.47 f 0.07 9.5 f 1.6 10.1 f 1.3 30.7 f 2.5 50.7 f 2.7 

Total levodopa = unconjugated levodopa + conjugated levodo a. * Total dopamine = unconjugated dopamine + conjugated dopamine. Total 3,4-dihydroxyphenylacetic 
acid = unconjugated 3,4-dihydroxyphenylacetic acid + conjugate$3,4-dihydroxyphenylacetic acid. Total homovanillic acid = unconjugated homovanillic acid + conjugated 
homovanillic acid. Sum of total levodopa, total dopamine, total 3,4-dihydroxyphenylacetic acid, and total homovanillic acid. f Percent of dose excreted in 0-48-hr urine 
(average f SE).  

tabolized by intestinal microorganisms ~n uitro to m-hydroxyphenylacetic 
acid, 4-methylcatechol, and 4-methylguaiacol. Furthermore, levodopa 
was reported to be metabolized by intestinal microorganisms to m- 
hydroxyphenylacetic acid in uiuo in conventional rats but not in germ-free 
rats (7-9). However, the small amount of metabolites formed by intestinal 
microorganisms reported by Bakke (6) and the fast absorption of levo- 
dopa from dogs observed in an in situ experiment5 support the hypothesis 
that bacterial metabolism of levodopa may be insignificant. 

The levodopa decarboxylase enzyme was widely distributed in the dog 
intestinal tract, with the greatest activity in the jejunum and the least 
activity in the duodenum. Taubin and Landsberg (10) suggested that 
catechol 0-methyltransferase also played an important role in levodopa 
metabolism in the rat intestine. Administration of the levodopa inhibitor 
or benzerazide [N-d l-seryl-N-( 1,2,3-trihydroxybenzyl)hydrazine], which 
cannot inhibit catechol 0-methyltransferase, increased plasma levodopa 
levels (11-14). This finding implies that catechol 0-methyltransferase 
plays a far less important role in intestinal metabolism of levodopa than 
levodopa decarboxylase. 

The data presented here indicate that the reduced bioavailability of 
orally administered levodopa is due to metabolism of levodopa by levo- 
dopa decarboxylase in the intestine, with the greatest activity in the je- 
junum and the least activity in the duodenum. 
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Abstract The Michaelis-Menten equation has been applied suc- 
cessfully in the study of enzyme kinetics. It usually is used to estimate 
urnax and k ,  from observations of the initial rate of reaction, u, at  various 
substrate concentrations, C,. A variation of this expression recently was 
used in pharmacokinetics, where it was assumed that the elimination rate 
of drug from some compartment is VC( t ) / [K  + C ( t ) ] ,  where C ( t )  is the 
drug concentration. The meaning of V and K in this context is not clear. 
Attempts were made to estimate V, K, and other model parameters by 
fitting the model to observed drug concentrations at sampling times after 
dosing. This paper discusses the ill-conditioning of the estimation of 
parameters of a differential equation that includes the so-called Mi- 
chaelis-Menten output. The solution of the equation is bound by the 
solutions to two first-order differential equations. Parameter values in 
an infinite region of the parameter space are shown to have solutions also 

lying within these two bounds. Simulations show that a minor change in 
the data (observations) or in the initial estimate of the parameters may 
cause a large change in the final estimates. In many cases, estimation and 
comparison of parameter values are meaningless. 

Keyphrases 0 Models, mathematical-compartment models with 
Michaelis-Menten-type elimination, computational problems, parameter 
estimation Michaelis-Menten equation-computational problems of 
compartment models, parameter estimation 0 Compartment mod- 
els-computational problems of models with Michaelis-Menten-type 
elimination, parameter estimation Pharmacokinetics-analysis, 
computational problems of compartment models with Michaelis-Men- 
ten-type elimination, parameter estimation 

Linear compartment models have been used successfully 
in pharmacokinetics for the past 40 years. Like all math- 

ematical models, they are an abstraction from the real 
biological system to a mathematical system and thus are 
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TIME 
Figure 1-Solution and bounds for Michaelis-Menten elimination 
model with D = 3, KA = 8, V = 0.418, and K = 0.182. 

approximations. Nevertheless, their successful use indi- 
cates that they are a good approximation with many drugs. 
For other drugs, they are not a good approximation, and 
attempts have been made to find nonlinear compartment 
models that are better. 

THEORETICAL 

One class of nonlinear models assumes that elimination of drug from 
the system, rather than being a first-order process, is a Michaelis-Menten 
process. The well-known Michaelis-Menten equation has been used 
widely and successfully in enzyme kinetic studies despite difficulties in 
the theoretical derivation (1,2). The Michaelis-Menten equation: 

u = UmaXs/ (km + Cs) (Eq. 1) 

is used to estimate u,,, and k, from observations of the initial reaction 
rate, u, at various substrate concentrations, C,. I t  was adapted to phar- 
macokinetic models by assuming that the elimination rate from a com- 
partment has a form similar to the right side of Eq. 1. Thus, if C ( t )  is the 
drug concentration in a compartment, then the rate of change of C ( t )  
is: 

(Eq. 2) 

where f ( t ,  0) is a function determined by the input into the Compartment. 
In the usual pharmacokinetic application of Eq. 2, attempts are made 
to estimate V and K along with the other model parameters, 8, by fitting 
the model to observed drug concentrations a t  n sampling times after 
dosing. Although Michaelis-Menten-type elimination models had been 
used previously, a detailed description and analysis of the simplest model 
incorporating Michaelis-Menten-type elimination-the one-compart- 
ment model with bolus intravenous input-were published in 1973 (3). 
For that model, f ( t ,  8) of Eq. 2 is zero; the model is expressed as: 

(Eq. 3) 

As Wagner (3) pointed out, for this model there is no solution that ex- 
presses C ( t )  as an explicit function of t ;  thus, the solution is an implicit 
function. For more complex models, i.e., a one-compartment model with 
first-order input, for which f ( t ,  0) in Eq. 2 is an exponential function, a 
solution in closed form does not exist. 

It is possible, however, to fit these models to observed data by nu- 
merically integrating Eq. 2 to obtain points [ t ,  C ( t ) ]  predicted by the 
model. Many recent pharmacokinetic studies obtained parameter esti- 
mates by combining a nonlinear regression algorithm with numerical 
integration. Numerical integration requires more computation than 
fitting data to the solutions of the differential equations and can be ex- 
pensive in terms of computer time. When combined with nonlinear re- 
gression algorithms that require many evaluations of the solution, the 
expense of fitting models in this way can be prohibitive. Furthermore, 
these methods may be unsatisfactory in terms of convergence and final 
fit. 

These problems motivated a search for an approximate solution to Eq. 
2 that might make estimation of the parameters with this model easier. 

During this search, mathematical properties of compartment models with 
Michaelis-Menten-type elimination were derived. The implications of 
these properties for computation and parameter estimation will be dis- 
cussed. Finally, the results of computer simulation reveal the statistical 
properties of the parameter estimates obtained by fitting the two simplest 
Michaelis-Menten-type models to data. 

RESULTS 

Mathematical Development-Tong and Metzler (4) derived the 
mathematical properties of solutions to Eq. 2. The mathematical details 
are given elsewhere (4), and only the two most important results for pa- 
rameter estimation will be discussed here. The conditions on the model 
of Eq. 2 are that f ( t ,  6 )  be nonnegative and bounded, with C(0) = 0; i.e., 
there must exist two positive constants, CO and s, such that: 

(Eq. 4) 

Given these mild restrictions, the function F ( t ,  A )  is a lower bound for 
C ( t )  with A = V / K  and an upper bound for C ( t )  with A = V / ( K  + B ) ,  
where B is the maximum of C ( t ) ,  and was defined as (4): 

0 2 f ( t ,  0) 2 CO exp(-st) for t 2 0 

F ( t ,  A )  = exp(-At) J‘ f ( r )  exp(AT) d r  

With the assumed restrictions, Eq. 2 includes many compartment 
models with Michaelis-Menten-type elimination from one compartment. 
Equation 5 shows that the time-concentration curves of these models 
are bounded by functions of the same form as the model equations for 
a one-compartment model with first-order input and first-order output 
(5). This is in agreement with the statement by Wagner (3) and others 
(5) that, for the simplest model, the solution to Eq. 2 approaches the linear 
solution as the concentration increases. The distance between the bounds 
given by Eq. 5 depends on V ,  K ,  and the maximum of C ( t ) .  As an exam- 
ple, the one-compartment model with first-order input (absorption rate 
= K A )  and Michaelis-Menten-type elimination will be considered. For 
this model, f ( t ,  8 )  is given by: 

f ( t ,  K A ,  D )  = KaD exp (-Kat) (Eq. 6 )  

where D is a dilution factor, roughly equal to the dose divided by a volume 
of distribution. By Eq. 5, the lower and upper bounds of the solution 
are: 

KAD [exp(-Qt) - e x p ( - ~ ~ t ) ]  
KA - Q 

where Q is the only solution of the equation: 

(Eq. 7) 

The bounds for the case in which D = 3, K A  = 8,  V = 0.418, and K = 
0.182 are shown in Fig. 1. For this case, the bounds are not restrictive. For 
the case in which D = 3, K A  = 8, V = 1, and K = 2, the bounds are shown 
in Fig. 2; for this case, the solution is bound rather closely by functions 
that are solutions to the linear compartment model. For larger V and K 
values, the bounds are so close together that the bounds and the solution 
appear as one line when plotted. 

The other result of Tong and Metzler (4) is illustrated in Fig. 3. If (KO, 
V O )  is a point in the ( K ,  V )  parameter space, then there is an infinite, 
open-ended wedge such that for any other ( K ,  V )  in this wedge, the so- 
lution to Eq. 2 with parameters V and K lies within the bounds of the 
solution to Eq. 2 with parameters V O  and KO. Also, there is a line through 
(KO, VO) within this wedge, such that any ( K ,  V )  on this line determines 
a solution to Eq. 2 that is nearly identical to the solution of Eq. 2 with the 
parameters (KO, VO). In other words, there is an infinite set of ( K ,  V )  
values that all generate the same time-concentration curve (to a finite 
accuracy). This observation will be illustrated further. 

The parameters of Eq. 1 often are estimated by applying one of several 
linearizing transformations to the equation (1,2). The parameters also 
may be estimated directly (and more correctly) from Eq. 1 by using a 
nonlinear estimation technique. In any case, the estimation of u,,, and 
k ,  will suffer from a high correlation of the estimates since the param- 
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Table I-Specifications of Models and Simulations 

Case Model (Input) Parameters Parameter Values Error Structure n N 

I Bolus intravenous Co, V , K  2.0,0.22,0.11 Additive I1 200 
2 Bolus intravenous Co, V , K  2.0,0.22, 0.11 Proportional 11 200 
3 Firstorder Kay V , K  1.5,2.0,5.0 Additive 11 200 
4 First order K A .  V .  K 1.5.2.0.5.0 ProDortional 11 200 
5 First order 
6 First order 
7 First order 

K i ;  V ;  K ,  D 1.5; 2.0; 5.0, 10.0 Additive 11 200 
KA, V ,  K ,  D 1.5,2.0,5.0,10.0 Proportional 11 200 
K A ,  V ,  K ,  Di, D2. D3 1.5,2.0,5.0,10.0, 20.0.40.0 ProDortional 33 100 

(three functions) 
8 First order KA, v, K ,  D 1.5, 2.0, 5.0, 10.0 Proportional 33 100 
9 Firstorder K A ,  V ,  K ,  D 1.5,2.0,5.0,40.0 Proportional 33 100 

eters appear in a ratio in the equation and a change in the estimate of urnax 
may be compensated for by a change in k,. This problem is accentuated 
when, as in Eq. 2, the ratio of parameters does not appear in the function 
itself but rather in the derivative of the function being fit. 

Previous work (4) showed that, for most ( K ,  V )  values, the solution to 
Eq. 2 is bounded by a function of two exponentials; in the previous ex- 
ample, these functions have one less parameter than the solution. (Ap- 
proximately, KE is replaced by V l K . )  Thus, if the data can be fit to Eq. 
5, trying to fit the data to Eq. 2 by nonlinear regression methods will result 
in a situation analogous to singularity in the case of linear regression. 

The result expressed in Fig. 3 implies that if ( V ,  K )  are estimated by 
least-squares techniques, the sum of squares surface will have a long 
valley with steep sides hut little change along the floor. This situation 
results in difficult estimation problems (6). If an estimation algorithm 
can find a minimum along this narrow valley, the estimates of V and K 
will be highly correlated since they can move together along the valley 
floor without much change in the sum of squared residuals. 

Thus, there are a t  least two sources of computational difficulties in 
fitting Eq. 2 to data: 

1. Since there is no closed form solution, numerical integration must 
be used to obtain predicted ca!ues of C(t) for a given model and t. 

2. Parameter estimation is hampered by a high correlation between 
estimates of V and K. 

To understand the implications of the second difficulty, Monte Carlo 
simulations were performed. 

Computer Simulation-The statistical properties of parameter es- 
timates of nonlinear models are known only asymptotically, and it gen- 
erally is not known how well these asymptotic properties approximate 
the results for small samples. Thus, Monte Carlo simulations were needed 
to determine the statistical characteristics of the estimates for a given 
model and experiment (7, 8). In view of the mathematical properties 
derived for Michaelis-Menten-type elimination models, a simulation 
study of the statistical properties for some simple models seemed nec- 
essary. 

One shortcoming of simulation studies is that only a small part of the 
problem can be simulated. For this report, some representative cases 
(Table I) were chosen with the hope that they would yield insight into 
the general problem. All models were one-compartment ones with either 
bolus input or first-order absorption and Michaelis-Menten-type elim- 
ination. Two types of error structure were considered ( a )  additive error 
in which each simulated “observation” was the model-predicted value 

t 
. SOLUTION 

LOWER BOUND..--- ----__r__ 1 

2 4 6 8 10 - 
TIME 

plus a normal random number from the distribution N(O,O.O9), and ( b )  
proportional error in which each observation was the model-predicted 
value plus the product of the model value and an N(O,O.O025) random 
variable. 

The proportional error structure is equivalent to a 5% error. This error 
structure violates one assumption of least-squares estimation, and either 
a transformation should be done or variable weights should be used. The 
usual least-squares estimation was carried out, however, in the belief that 
it reflects common practice where no error analysis is done and the error 
structure is not known. 

The model values were obtained by numerically integrating either Eq. 
3 or Eqs. 2 and 6 with the parameter values given in Table I. Each data 
set had n observations. The values o f t  were 0,0.5,1,1.5,2,3,4,5,6,7,  
and 10 for the intravenous bolus model and 0.25,0.5,1,1.5,2,3,4,6,9,  
12, and 18 for the first-order input models. Each model was simulated 
N times; that is, N sets of observations were generated; for each set of n 
observations, the parameters were estimated by the computer program 
NONLIN (9) ,  a nonlinear regression program. This program also esti- 
mated the standard deviation for each estimate and the correlation matrix 
of the estimates. 

Table I1 summarizes the simulation results of Case 5 (Table I). Similar 
tables were prepared for all cases in Table I; for space reasons, only this 
table is presented in full. However, the conclusions and discussion are 
based on all of the tables’. 

In Table 11, the first column identifies the parameters used to generate 
the N = 200 sets of observations, the standard deviations of the estimates, 
the largest eigenvalue (El) of the estimated correlation matrix, and the 
correlations of the estimates. The second column gives either the values 
of the parameters or, in parentheses, the sample values of the 200 esti- 
mates. Thus, column 2 of the row labeled s ( V )  contains the standard 
deviation of the 200 estimates of V; column 2 of the row labeled C13 
contains the correlation of the 200 pairs of estimates of the first and third 
parameters ( K A  and V ) .  The remaining columns of Table I1 give the 
sample statistics of the 200 estimates: minimum, maximum, 10th and 
90th percentiles, mean, and median. Thus, in the row labeled s ( V ) ,  the 
first column gives the standard deviation of the 200 estimates of V; the 
following columns give the sample value followed by the statistics of the 
200 estimates of s( V )  computed by the estimation algorithm from each 

V 

I 

1 

KO K 

I 
I I 

,K 

Figure 3-Relation of solutions in the V-K parameter space. 

Figure 2-Solution and bounds for Michaelis-Menten elimination 
model with D = 3, KA = 8, V = 1, and K = 2. Copies of the full set of tables may be obtained from the authors. 
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Table 11-Summary of Simulation of Case 5,  Table I 

Parameter or Sample Statistics 
Maximum Parameter Samde Value Minimum P i n  Mean Median P90 

K A  
V 

1.50 
2.00 
5.00 

10.00 
(0.205) 

(201.62) 
(803.12) 

(0.738) 

(-0.762) 
(-0.715) 
(-0.908) 

- 

(0.992) 
(0.826) 
(0.7671 

0.88 
0.84 
0.59 
8.30 
0.065 
0.098 
0.380 
0.170 
3.088 

-0.921 
-0.920 
-0.992 

0.940 
0.763 
0.556 

.. 

1.24 
1.18 
1.51 
9.33 
0.118 
0.296 
1.211 
0.334 
3.328 

-0.841 
-0.821 
-0.960 

0.971 
0.809 
0.679 

1.48 
52.69 

215.74 
10.18 
0.183 

3596.0 
14,596.0 

0.691 
3.506 

-0.776 
-0.718 
-0.914 

0.988 
0.841 
0.771 

1.48 
2.30 
6.17 

10.09 
0.177 
1.254 
5.427 
0.598 
3.518 

-0.776 
-0.727 
-0.920 

0.993 
0.840 
0.778 

1.74 
18.67 
89.67 
11.10 

113.87 
556.14 

0.252 

1.144 
3.677 

-0.712 
-0.610 
-0.866 

1.000 
0.877 
0.860 

2.33 
1561.0 
5875.0 

13.66 
0.329 
m 

m 

3.565 
3.860 

-0.599 
-0.480 
-0.765 

1.000 
0.944 
0.943 

data set. 
Table I1 displays a number of points important to understanding the 

deficiency of Michaelis-Menten-type models for pharmacokinetic 
analysis. The distributions of the V and I( estimates are skewed strongly 
to the right with some very large estimates. This skewness inflates the 
means so that they are -25-45 times larger than the parameter values 
used to generate the data. The medians also are shifted to the right, 
particularly the median of the K estimates. 

It may be thought that when extreme values are estimated for V or K, 
the plots of the fitted curves indicate that something is wrong. However, 
Fig. 4 shows that very extreme values (V = 1561 and K = 5165) generate 
curves that are not much different from those generated when V = 2 and 
K = 5. Certainly, they could not be distinguished if each were represented 
by 11 observations containing 5% or more noise. 

Table I1 also shows the high correlation between estimates of V and 
K; for these 200 estimates, the correlation (Spearman) is 0.992. The es- 
timate of the correlation computed by NONLIN for each data set indi- 
cates this finding; the mean estimated correlation is 0.988, the median 
is 0.993, and the minimum of the 200 is 0.940. The eigenvalues of the es- 
timated correlation matrix sum to the number of parameters estimated 
(in this case, four) and the size of the largest eigenvalue (El) indicate the 
dimensionality of the parameter estimation space. The average of the 
largest eigenvalue is -3.5, indicating that some of the remaining three 
eigenvalues are close to zero. Thus, the dimensionality of the parameter 
space is less than four, a condition of singularity. Figure 5 is a plot of the 
estimates of V and K. The top 10% was censored so that the other esti- 
mates can be shown in a reasonable scale. The estimates all lie close to 
a straight line. 

Because the distributions of the V and K estimates are extremely 
skewed, the standard deviations are quite large [s( V) = 201.6 and s ( K )  
= 803.11. However, the 90th percentile indicates that, of the standard 
deviation estimates made with each data set, 90% of the s ( V )  estimates 
are <114 and 90% of the s ( K )  estimates are <557. 

The main points made by Table I1 are: 
1. Estimates of V and K are highly skewed to the right, with many of 

the estimates being many times larger than the true parameter values. 
2. Estimates of V and K are very highly correlated 90 that the estimate 

of one almost determines the estimate of the other. 
3. Estimates of V and K have very high variances, although the esti- 

mated variances as computed by NONLIN from individual data sets 
underestimate the variability. 

Although not shown in Table 11, the correlations of estimates of V and 
K with their respective standard deviation estimates also are high. For 
these 200 data sets, the correlation between estimates of V and s ( V )  is 
0.977; the correlation between estimates of K and s ( K )  is 0.980. 

Thus, the estimated variances of the V and K estimates, as computed 
by a nonlinear regression program, do not give a true picture of the un- 
certainty in the estimates. 

As a related point, Table I1 shows that the linear parameters, K A  and 
D, are estimated well in that the distributions of their estimates are 
symmetric with small bias and small standard deviations. The correlation 
of their estimates, while smaller than that of the V and K estimates, is 
still large (-0.762 for this set of 200 estimates). 

The tables of the simulations of the other cases show similar results. 
Proportional error with a standard deviation of 5% gives much the same 
result as a constant error with a standard deviation of 0.05. For Cases 3 
and 4 (Table I), it was assumed that D = 10 was known; only three pa- 
rameters were estimated. This procedure improved the estimation, but 
the distributions still were skewed to the right for Case 3, with means of 
2.58 and 8.04 for V and K ,  respectively, and 90th percentiles of 3.80 and 
14.02. The correlation of the V and K estimates was 0.993. 

Estimation was best for the simple model (Cases 1 and 2 of Table I). 
However, even for these cases, the distributions were skewed to the right 
with some very extreme values, and the correlations were high (0.934 for 
Case 1 and 0.974 for Case 2). 

For all of these simulations, the initial estimates for the iterative 
nonlinear regression program were the true values of the parameters used 
to generate the data. A limited amount of simulation with other starting 
values indicated that, for a particular data set, the initial values affected 
the final estimates but, averaged over 200 simulations, initial estimates 
within 30% of the true values did not make much difference. Initial es- 
timates that differ by more than 30% often converge to values far removed 
from the true parameters. 

A Michaelis-Menten-type model may be well approximated by a linear 
model for a single drug exposure, but observations at  more than one dose 
level will expose the nonlinearity of the system. Thus, an attempt to 
evaluate the effect of simultaneous fitting of observations at  three dose 
levels was made (Case 7, Table I). For Case 7, it was assumed that V and 

Figure I-Curves of the Michaelis-Menten elimination model for the 
(V, K )  oalues (1562,5165) and f2,5). 

15.004 

In 12.00: 
w ,  l- 
a > 9.001 
- 
k '  ., f ::. 
L' 6.00{ .._ .. .f . 

I ,f.f b 

'"o~rj" ...? 

,- .~ 0.001 ---- ' 
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K ESTIMATES 
Figure 5-Distribution of K and V estimates, N = 180 
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Table 111-Summary of Parameter Estimates for Simultaneous Fitting, Case 7 

Parameter or Sample Statistics 
Parameter Sample Value Minimum PlO Mean Median P90 Maximum 

V 2.00 1.68 1.81 2.00 2.00 2.18 2.39 
K 5.00 3.47 4.01 4.99 4.96 5.90 6.62 

S ( V )  (0.138) 0.076 0.098 0.135 0.130 0.183 0.217 
s ( K )  (0.712) 0.627 0.822 1.141 1.120 1.540 1.966 

K remained the same when D = 10,20, and 40. Data were simulated for 
three experiments (D = 10,20, and 40); these three observed curves, with 
a total of n = 33 observations, were fit simultaneously to one set of K A ,  
V, and K values and three D values. This procedure gave much better 
parameter estimation. The distributions of the V and K estimates were 
symmetric about the true values with no extreme estimates. The results 
for V and K are shown in Table 111. The correlation of the V and K esti- 
mates was reduced to 0.767. 

When comparing Table 111 with Table 11, it must be noted that the data 
sets of Table I11 had 33 observations while those of Table I1 had only 11. 
The improvement in estimation of V and K was not due only to the larger 
sample sizes. To confirm this fact, Cases 8 and 9 (Table I) also had 33 
observations per data set but, in these cases, the observations consisted 
of three replications at  each saapling time used in Cases 3-6. Although 
the variability was reduced markedly and there were no extreme esti- 
mates, the distributions were still skewed to the right and the correlations 
were still very high (0.991 for Case 8 and 0.983 for Case 9). 

DISCUSSION 

The mathematical development and computer simulation indicate that 
it is not possible to estimate V and K of a Michaelis-Menten-type 
pharmacokinetic model with any precision from a single-dose experiment. 
Furthermore, the asymptotic theory standard deviations, as computed 
by a nonlinear regression program, are misleading in that they underes- 
timate the uncertainty in the estimates. [Although the NONLIN program 
(9) was used in this study, this result would be true for any computer 
program that estimates the variance-covariance matrix of the estimates 
from the matrix of partial derivatives.] This observation may explain why 
in many studies the estimate of between-subject variability is so much 
larger than the estimate of within-subject variability of the estimates (10). 
It may be an artifact of estimation rather than a characteristic of the drug. 
These difficulties in estimating Michaelis-Menten parameters also make 
the comparison of algorithms for estimation less meaningful, as in Ref. 
11. 

In many situations, estimating V and K for the purpose of comparing 
values between studies (i.e., in different disease states) is useless if the 
estimates are made from observations after only one dose of drug. 
However, the simulations indicate that if estimations can be made with 
observations obtained after two or more dose levels, then the estimations 
are much improved. To do this, it must be assumed that the biological 
system, like the computer system, can generate data with the same values 
of K A ,  V, and K at  different doses and different times. It is not certain 
that this assumption is valid. 

Although the Michaelis-Menten-type models are not useful for esti- 

mation of V and K with observations from only one dose, they may have 
other value. They may be useful to show that a system is better described 
by a nonlinear pharmacokinetic model than by a linear model, for de- 
scribing data, and for prediction. 

The size of these simulations ( N  = 200 for most of them), while much 
larger than most computer simulations reported in the pharmaceutical 
sciences literature, is about minimum for validity. These simulations 
cover only a few points in the entire space of these models. Future re- 
search extending these simulations would be useful in evaluating these 
models. In particular, the errors assigned in these simulations were rel- 
atively small for pharmacokinetic data. Larger (and more realistic) errors 
could only make estimation more difficult. Development of other non- 
linear models that avoid these computational problems also would be 
use f u 1. 
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